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A moving mesh method is developed for the numerical solution of one-dimensional
phase-change problems modelled by the phase-field equations. The computational
mesh is obtained by equidistribution of a monitor function tailored for the func-
tional variation of the phase field in the interfacial region. Existence and uniqueness
of the discretised equations using a moving mesh are also established. Numerical
results are given for classical and modified Stefan test problems. The numerical al-
gorithm is relatively simple and is shown to be far more efficient than fixed grid
methods. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

There has been much recent interest in the modelling of solidification processes. The
main challenge is to incorporate events on the smallest microstructural scales to the larger
macroscopic scales. Classical Stefan models do not take account of important physical
properties such as undercooling and surface tension. These effects are normally incorporated
within modified Stefan models (see [14] and Section 2.1). The numerical simulation of the
modified model requires the estimation of the curvature of the interface between the solid
and the liquid phases. This is often a difficult task, especially in three dimensions or when
phase fronts merge.

Phase-field (PF) models avoid the need to explicitly track the moving interface. This is
done by introducing an auxiliary continuous order parameter p, which takes on constant
values in the solid and liquid phases and has a rapid transition in the vicinity of the solidifi-
cation front. While PF models have been successful in demonstrating qualitative behaviour
such as dendritic growth [24], a more quantitative agreement with sharp interface models
depends on the interfacial thickness being small [33]. As the phase field is almost constant
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away from the front it is clear that efficient numerical procedures to solve the PF equations
should incorporate some form of mesh adaptation [26, 29, 31].

There has been a considerable development of moving mesh methods to solve partial
differential equations (PDEs) with steep solution fronts. These include flame propagation
problems, the resolution of boundary and interior layers, and travelling wave solutions
of nonlinear reaction–diffusion equations. The general idea behind these methods is to
combine an auxiliary equation describing the evolution of the mesh with a discretisation
of the physical PDE in a moving reference frame. For one-dimensional problems a useful
approach to construct the mesh equation is the concept of equidistribution, where some
function (often referred to as a monitor function) is distributed uniformly over the domain
[15]. Such a mesh is said to satisfy an equidistribution principle (EP). The monitor function
should be related to the local difficulty in solving the given PDE. Most of the practical
applications of these algorithms require that the EP be regularised in time, the monitor
function be smoothed in space, and the moving mesh equation be discretised [16, 20].
The combined effect of all of these approximations is not well understood although some
analysis of spatial smoothing has been carried out by Huang and Russell [21].

Recently, Mackenzie and Robertson [25] have developed a simple moving mesh startegy
for interface propagation problems that avoids some of the approximations given above.
This is achieved using an analytically integrable monitor function which automatically gives
rise to a smooth mesh. The algorithm is relatively simple and has been shown to work well
when applied to a regularised enthalpy formulation of classical Stefan problems. A related
approach has also been used by Farrell and Drury [19] to construct moving mesh methods
for nonlinear hyperbolic problems. The purpose of this paper is to consider the application
of the moving mesh method of Mackenzie and Robertson to solve the one-dimensional PF
equations. Based on an asymptotic expansion of the phase variable in the interface region
we propose a monitor function which leads to a nonuniform mesh that automatically scales
with the interface thickness. Furthermore, we show that the system of nonlinear algebraic
equations arising from the discretisation has a unique solution.

An outline of the rest of this paper is as follows: In the next section we describe the
modified Stefan and phase-field models. In Section 3 we present the moving grid algorithm
along with the monitor function we propose for these problems. The iterative algorithm used
to solve the mesh and physical PDEs is given in Section 4. Finally, in Section 5 we apply the
moving mesh method to test cases involving a classical Stefan problem, a modified Stefan
example with undercooling, and the stability of a solid sphere within its melt.

2. MODEL EQUATIONS

2.1. Modified Stefan Model

The modified Stefan model describes a heat conduction problem and the evolution of a
sharp interface �(t) within a region � ⊂ IRn . The objective is to find a temperature field
u(x, t) and a curve �(t) ⊂ � that solves the nondimensionalised equations

∂u

∂t
= K∇2u, x ∈ �\�(t), (2.1a)

Lv = −K [∇u]+−, x ∈ �(t), (2.1b)

u = − σ


s
(κ + αv), x ∈ �(t). (2.1c)
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Equations (2.1a) and (2.1b) describe the diffusion of heat within the domain and the release
of latent heat across the phase-change interface. Here L is the latent heat per unit mass, K
is the thermal diffusivity, v is the normal velocity of the interface, and [∇u]+− is the jump
in the normal component of the temperature gradient at the interface. Surface tension and
undercooling effects are modelled by the extended Gibbs–Thompson relation (2.1c). The
parameter σ is the surface tension, α denotes a kinetic undercooling coefficient, 
s is the
entropy difference between the two phases, and κ is the sum of the principal curvatures at
a point of the interface. The classical Stefan model is obtained from (2.1) by setting σ = 0.
Numerical approaches for solving (2.1) require some form of front tracking to determine
the curvature on the interface. An alternative is to use a so-called diffuse interface model
that implicitly defines the position of the interface.

2.2. Phase-Field Model

The PF equations are derived using the idea of a phase order parameter p and Landau–
Ginzburg theory. A free energy functional F is constructed in terms of the phase order
parameter and other thermodynamic variables. For example,

F(p, u) =
∫

�

[
1

2
ξ 2(∇ p)2 + f (p, u)

]
dx, (2.2)

where ξ is a length scale and f (p, u) is a free energy density. Various choices of the precise
choice of f have been suggested, the most studied of which is the Caginalp potential [10]

f (p, u) = 1

8a
(p2 − 1)2 − 2up. (2.3)

This density consists of a double-well potential with a depth measured by a parameter a
and a term coupling p and u. The energy density has a lower free energy associated with the
value p = 1, which corresponds to the pure liquid phase, and p = −1, which corresponds to
the solid phase (see Fig. 1). The interfacial region corresponds to transitional states where

FIG. 1. Caginalp free energy density.
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−1 < p < 1. The parameter a has to be small enough such that

∂ f

∂p
= 1

2a
(p3 − p) − 2u = 0

has three distinct roots near p = 0, ±1. The parameters ξ and a are length scales related to
the macroscopic physics. In particular, the surface tension σ and the interfacial thickness ε

are related by

σ = 2

3
εa−1 = 2

3
ξa−1/2 and ε = ξa1/2. (2.4)

A kinetic equation for the phase field is obtained by requiring that F monotonically
decreases in time. The simplest choice of this requirement leads to the PF equation

αξ 2 ∂p

∂t
= −δF

δp
, (2.5a)

where αξ 2 is a relaxation time. The phase equation is conjoined with the heat equation,
modified to take into account the liberation of latent heat by the inclusion of an appropriate
source term:

∂u

∂t
+ L

2

∂p

∂t
= K
u. (2.5b)

Note that it is not clear whether the solution of (2.5) will result in F monotonically decreasing
in time, as Eq. (2.5b) is not derived from basic thermodynamic principles. However, Penrose
and Fife [28] have shown that the PF equations with the Caginalp free energy density can
be derived in a thermodynamically consistent manner. Other thermodynamically consistent
PF models have also been proposed [32]. However, it is not the purpose here to evaluate and
compare the performance of the various models but to develop moving mesh methods as
an efficient numerical solution procedure. Therefore, in the rest of this paper we will only
consider the Caginalp free energy density, although the numerical approach can be applied
to other formulations.

3. AN ADAPTIVE MOVING MESH METHOD

The aim of the phase-field model described here is to spread the phase change interface
over a thin but finite region. The success of any numerical solution of the PF equations (2.5)
requires that the interfacial region is well resolved. The computational mesh does not need
to be as fine away from the interface where p and u are smooth.These demands clearly
suggest than an efficient numerical method should involve some form of mesh adaptivity.
For simplicity, we will concentrate on the one-dimensional PF equations and the use of
moving mesh techniques.

Equations (2.5) are first recast in terms of the independent variables η and t , where η is
defined by a one-to-one coordinate transformation of the form

x ≡ x(η, t), η ∈ �c, t ∈ (0, T ], (3.1)

from computational space �c × (0, T ] to physical space �p × (0, T ]. Without loss of gen-
erality we will assume in this section that �c = (0, 1). At time t , the map (3.1) defines a
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set of nodes in �p that corresponds to a uniform mesh on �c. This uniform mesh is given
by

η j = j/N , j = 0, 1, . . . , N , (3.2)

and the related grid on �p is


N := {0 = x0(t) < x1(t) < · · · < xN (t) = 1}, (3.3)

where

x j (t) = x(η j , t), j = 0, 1, . . . , N . (3.4)

The coordinate mapping that leads to the mesh adaptation is assumed to equidistribute a
monitor function M(x), which is the subject of Section 3.2.

It is convenient to express the time derivatives appearing in (2.5) in Lagrangian form and
we therefore write the equations as

u̇ − ẋ
∂u

∂x
+ L

2

(
ṗ − ẋ

∂p

∂x

)
= K

∂2u

∂x2
, (3.5)

αξ 2

(
ṗ − ẋ

∂p

∂x

)
= ξ 2 ∂2 p

∂x2
− 1

2a
(p3 − p) + 2u, (3.6)

where u̇, ṗ, and ẋ denote derivatives with respect to t in which η is held constant.
In a moving mesh method a mesh generation equation, based on equidistribution of

a monitor function, is combined with (3.5) and (3.6) to give a system of equations that
determines u(x(η, t), t), p(x(η, t), t), and x(η, t). To describe the discretisation we first
introduce some notation. Let hn

j = xn
j − xn

j−1 and 
tn = tn − tn−1. We will also denote

un

 = (un

0, un
1, . . . , un

N

)T
, pn


 = (pn
0 , pn

1 , . . . , pn
N

)T
,

where un
j and pn

j are approximations of u(xn
j , tn) and p(xn

j , tn), respectively. We consider
the following semi-implicit discretisations of (3.5) and (3.6):

un+1
j − un

j


tn+1
+ L

2

pn+1
j − pn

j


tn+1
− xn+1

j − xn
j


tn+1

(
un

j+1 − un
j−1

hn
j+1 − hn

j

+ L

2

pn
j+1 − pn

j−1

hn
j+1 + hn

j

)

= 2K

hn+1
j+1 + hn+1

j

(
un+1

j+1 − un+1
j

hn+1
j+1

− un+1
j − un+1

j−1

hn+1
j

)
, (3.7)

αξ 2

(
pn+1

j+1 − pn
j


tn+1
− xn+1

j − xn
j


tn+1

pn
j+1 − pn

j−1

hn
j+1 + hn

j

)

= 2ξ 2

hn+1
j+1 + hn+1

j

(
pn+1

j+1 − pn+1
j

hn+1
j+1

− pn+1
j − pn+1

j−1

hn+1
j

)
− 1

2a

[(
pn+1

j

)3 − pn+1
j

]+ 2un
j . (3.8)

Note that the convection-like terms introduced by the movement of the mesh and the tem-
perature term in (3.6) are treated explicitly, whereas all other terms are treated implicitly.
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This has two important effects. First, it allows the equations to be solved in succession.
That is, given an approximation {un


, pn

} we first solve (3.8) for pn+1


 . We will show under
a suitable condition on the time step that a unique solution exists. Thereafter, we solve (3.7)
for un+1


 and once again we will show that this can always be done uniquely.

3.1. Iterative Solution of the Nonlinear System of Equations

The calculation of pn+1

 requires the solution of (3.8), which, after multiplying through

by 
tn+1, can be written in the form

G
(
pn+1




) = Apn+1

 + φ

(
pn+1




) = 0, (3.9)

where φ is continuous, diagonal, and monotonic in each component. The tridiagonal matrix
A has elements

A j, j−1 = − 2ξ 2

hn+1
j

(
hn+1

j+1 + hn+1
j

) , A j, j+1 = − 2ξ 2

hn+1
j+1

(
hn+1

j+1 + hn+1
j

) ,
A j, j = αξ 2


tn+1
+ 2ξ 2

hn+1
j

(
hn+1

j+1hn+1
j

) − 1

2a
.

Clearly, the off-diagonal elements are always negative and the diagonal elements are posi-
tive if


tn+1 < min
j

(
2αε2hn+1

j+1hn+1
j

hn+1
j+1hn+1

j − 4ε2

)
. (3.10)

Hence, if (3.10) is satisfied then A is an irreducibly diagonal dominant M-matrix and hence
A−1 exists. The existence and uniqueness of pn+1


 then follows from Theorem 13.1.3 of
Ref. [27]. In practice, we use Newton’s method to solve (3.9). Thereafter, we find un+1


 by
solving (3.7), which is a linear system of the form

Cun+1

 = bn+1


 ,

where bn+1

 is a known vector and C is an irreducibly diagonal dominant M-matrix. A

unique solution is obtained since C−1 exists.

3.2. Choice of Monitor Function

The time-dependent coordinate transformation is assumed to satisfy the equidistribution
principle

∫ x(η,t)

0
M(s, t) ds = ηθ(t), (3.11)

where

θ(t) =
∫ 1

0
M(s, t) ds. (3.12)
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The monitor function M should be related to the local difficulty in solving (3.5) and (3.6).
This is clearly where the phase variable changes rapidly in the interfacial region. Some
guidance on the choice of an appropriate monitor function can be obtained from an asymp-
totic analysis of the phase field at the interface. Following Caginalp [8], we consider the
phase equation (2.5a) with the free energy density given by (2.3) in the limit ξ and a → 0
and α is fixed. If we let ε2 = ξ 2a then Eq. (2.5a) can then be written as

αε2 pt = ε2 pxx + 1

2
(p − p3) + 2au. (3.13)

If we seek a travelling wave solution of (3.13) of the form p = w(x/ε − vt) = w(z) then

−vαε2wz = wzz + 1

2
(w − w3) + 2au.

If we assume that w has an asymptotic expansion w = w0 + εw1 + · · · , then equating
zeroth-order terms and letting a → 0 we find that

w0
zz + 1

2
(w0 − (w0)3) = 0. (3.14)

The solution of (3.14) subject to the boundary conditions w0 → ±1 as z → ±∞ is w0(z) =
tanh(z/2). Hence, p(x, t) has an inner expansion, the zeroth-order term of which is

pin = tanh

(
x − s(t)

2ε

)
, (3.15)

where s(t) denotes the position of the interface. If x∗ denotes an estimate of the front position
at any given time, then ideally we would like to choose a monitor function that is tailored
to the profile

p(x) = tanh

(
x − x∗

2ε

)
. (3.16)

The role of mesh equidistribution is to ensure that a nonsmooth function in �p is mapped
onto a much smoother function in �c. For example. the steep function (3.16) can be mapped
onto the straight line

p(η) = tanh

(
− x∗

2ε

)
+ η

[
tanh

(
− (1 − x∗)

2ε

)
− tanh

(
− x∗

2ε

)]

by equidistributing the monitor function

M(x) = sech2

(
x − x∗

2ε

)
. (3.17)

To determine if the nonuniform mesh obtained using (3.17) is appropriate we consider the
convergence of the error between p(x) and its piecewise-linear interpolant p̂(x). A similar
approximation problem is considered in [3], where it is shown that

‖e‖∞ ≡ max
x∈(0,1)

|p(x) − p̂(x)| ≤ C N−1,

where C is independent of ε. So while the interpolation error is uniformly convergent the
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rate is suboptimal. In [3] it is also shown that second-order convergence can be obtained
using the monitor function

M(x) = sech

(
x − x∗

2ε

)
. (3.18)

Unfortunately, this monitor function clusters all of the mesh points within the interfacial
region. As the same mesh is used to solve the heat equation it is clear that this distribution
of mesh points is unsatisfactory. To ensure that mesh points are available away from the
interface region we consider adding a positive floor onto the monitor function. This idea is
commonly used with moving mesh techniques although the floor is often chosen on an ad
hoc basis [30]. A more sensible approach is to choose the floor so that a constant proportion
of the mesh points is placed external to the interfacial region and that this proportion is
independent of ε. To achieve this we use the monitor function

M(x) = γβ + sech

(
x − x∗

2ε

)
, (3.19)

where

β =
∫ 1

0
sech

(
x − x∗

2ε

)
dx, γ > 0. (3.20)

An analogous approach has been used to construct suitable monitor functions for singularly
perturbed boundary value problems [1, 2]. If we substitute (3.19) into (3.11) and carry the
integration out exactly then the mesh points satisfy the equations

γβx j + 2ε[sin−1(tanh((x j − x∗)/2ε)) − sin−1(tanh(−x∗/2ε))] = jβ(1 + γ )

N
, (3.21)

for j = 1, . . . , N − 1. The mesh is obtained by solving these equations using Newton’s
method. The parameter γ allows some flexibility in the proportion of mesh points that are
placed within the interface region. For example, when x j is outside the layer then an element
of lengths dx ⊂ �p is related to an element dη ⊂ �c by

dx ≈ (1 + γ )

γ
dη.

This shows that we have approximately γ N/(1 + γ ) points outside the layer and N/(1 + γ )

points inside the layer. For all the numerical experiments carried out in Section 5 we have
set γ = 1, which allows the interface region to be well resolved while maintaining sufficient
grid resolution away from the layer region.

Before we finish this section it is worth commenting on other possible monitor functions.
A popular choice is the scaled solution arc length

M(x) =
√

1 + αp2
x , (3.22)

where α > 0 is a user-chosen parameter. This monitor functions forms the basis of the
moving mesh method used by McCarthy [26]. One drawback of this monitor function is
that it is not analytically integrable and hence the equidistrbution principle (3.11) has to
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be approximated using quadrature. A more important deficiency is that the error in the
piecewise-linear interpolation of (3.16) converges suboptimally on the grid obtained by
equidistribution of (3.22). Numerical experiments and analysis confirming this behaviour
are given in [3].

4. THE COMPLETE ALGORITHM

Each time step of the adaptive algorithm requires the solution of (3.7), (3.8), and (3.21).
In theory, one could simultaneously solve this large set of differential algebraic equations.
An alternative is to decouple the calculation of the mesh from the solution of the semi-
discretised phase-field equations. The main advantage of this approach is the reduction in
size of the algebraic systems that arise at each time step. This is the main reason why recent
moving mesh methods for multidimensional problems use some form of decoupling [4, 12,
22]. An additional advantage is that decoupling allows flexibility in the choice of tolerances
when determining the grid and the physical solution. As the grid is of secondary importance
it is often possible to use a less strict tolerance on the convergence of the mesh. To take a
time step from tn to tn+1 we use the following algorithm, which is similar to that used in
Mackenzie and Robertson [25]. The numerical approximation of the interface at tn will be
denoted by xn

∗ .

1. Perform the simple prediction

xn+1
(∗,0) = xn

∗ + 
tn+1

(
xn

∗ − xn−1
∗


tn

)
. (4.1)

Set s = 0.
2. Let x∗ = xn+1

(∗,s) and solve (3.21) to give 
n+1
N ,s .

3. Solve (3.7) and (3.8) for un+1

,s and pn+1


,s . Determine x∗ = xn+1
(∗,s+1) using linear inter

polation for p(x∗) = 0.
4. If |xn+1

(∗,s+1) − xn+1
(∗,s)| < T olgrid then un+1


 = un+1

,s , pn+1


 = pn+1

,s , 
n+1

N = 
n+1
N ,s , and

xn+1
∗ = x(∗,s+1). Otherwise s = s + 1 and go to 2.

In all the calculations presented in the following section we set T olgrid = ε/50. The sim-
ple initial extrapolation step is extremely useful for speeding up convergence. By only
extrapolating the estimate of x∗ we ensure that we have a nonoverlapping grid.

5. NUMERICAL RESULTS

5.1. A Classical Stefan Problem

The first case we consider is a classical freezing problem in a semi-infinite plane. This
allows us to compare the results using the phase-field model to the similarity solution of
the classical Stefan model. Theoretically, the solution of the PF model has been shown to
approach that of the Stefan model as a, ξ → 0, σ → 0, and α is fixed [8]. This example
also allows us to compare the performance of our moving mesh method with fixed mesh
results of Caginalp and Socolovsky [10] and the adaptive moving mesh algorithm of Blom
and Zegeling [6] used by McCarthy [26].
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Neumann’s solution of the classical Stefan problem takes the form

u(s)(x, t) =



C1
[erf(β/2) − erf(x/(2

√
t + t0))]

erf(β/2)
, x ≤ s(t),

C2
[erf(β/2) − erf(x/(2

√
t + t0))]

1 − erf(β/2)
, x > s(t),

(5.1)

where t0 is the starting time and C1 and C2 are constants. The position of the interface s(t)
is given by

s(t) = β
√

t + t0,

where β is the solution of

2√
π

e−β2/4[C2/(1 − erf(β/2)) − C1/erf(β/2)] − β = 0.

For computational purposes we let 0 ≤ x ≤ 1 and choose t0 = 0.15, C1 = −0.085, C2 =
−0.015, which gives a value of β = 0.396618.

The PF calculations are performed with the values L = K = 1. The boundary and initial
conditions for the temperature are

u(0, t) = C1, u(1, t) = u(s)(1, t), and u(x, t0) = u(s)(x, t0).

Remembering that the Caginalp potential f (p, u) has a local minimum close to p = −1
and p = 1, we see that the boundary conditions for the phase field are

p(0, t) = min
p

f (p, C1), closest to −1,

and

p(1, t) = min
p

f
(

p, u(s)(1, t)
)
, closest to 1.

To allow the computational mesh to be clustered around the phase front at time t0 we use a
smoothed initial value of the phase field. For this purpose we set

p(x, t0) =
{

p(0, t0) tanh
( s(t0) − x

2ε

)
, x ≤ s(t0),

p(1, t0) tanh
( x − s(t0)

2ε

)
, x ≥ s(t0).

(5.2)

We first consider the results with the parameters a = 0.0625, ξ = 0.002, and α = 1. These
values lead to an interface thickness ε = 0.0005 and a surface tension σ = 0.00533. This
case corresponds to experiment 5 of Caginalp and Socolovsky [10] and is a stiff test for a
fixed grid method. In fact it is not possible to compute an accurate solution up to t = 1 using
N = 1000 uniform mesh intervals. However, Fig. 2 shows the computed interface position
and mesh trajectories using the moving mesh method with N = 50 and 
t = 5 × 10−3. We
can see that the mesh points move smoothly and the predicted interface position is very
accurate. Figure 3 shows the temperature profiles at t = 0, 0.2, and 1. To plotting accuracy
the moving grid results are indistinguishable from the Neumann solution. The temperature
history at the point x = 0.18 is also shown in Fig. 3. As pointed out by Fabbri and Voller
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FIG. 2. (Left) Interface positions (— Neumann, - - - moving mesh) and (right) mesh trajectories for phase-field
approximation of a classical Stefan problem.

[18], this type of plot is severe check of the numerical method and we can see clearly that
the moving mesh method performs excellently. The ability of the moving mesh method to
adapt to different interface thicknesses is shown in Fig. 4, where we have plotted the phase
and temperature fields at t = 1. Note that the grids have an equal number of points within
the interface independently of ε and that the interface position is relatively insensitive to ε.
These results are an improvement on those computed by McCarthy [26]. This can mainly
be attributed to an appropriate choice of monitor function and a suitable initial mesh. Table I
shows the results obtained for the parameter values considered in [10]. The accuracy using
the moving mesh method is comparable with those presented in [10], although we have
only used N = 50 points throughout. The remaining error in the front position is mainly
due to the small but nonzero value of σ which we have used in the computations. The fact
that the normalised CPU time does not increase dramatically as ε → 0 demonstrates the

FIG. 3. (Left) Temperature profiles (— Neumann, � moving mesh) and (right) the temperature history at
x = 0.18 (— Neumann, - - - moving mesh) for phase-field approximation of a classical Stefan problem.
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FIG. 4. (Left) Phase and (right) temperature fields at t = 1 for classical Stefan problem.

efficiency and robustness of the moving mesh algorithm. It should be noted that in [10] the
authors report an increase in CPU time of a factor of 8.59 when ε goes from 0.00512 to
0.00128 using a uniform mesh method.

5.2. A Modified Stefan Problem

The sharp interface problem with nonzero values of α and σ is of considerable practical
importance. Following Fabbri and Voller [18] and McCarthy [26], we consider a test case
similar to the previous example. We will assume that classical Stefan solidification occurs
from t = 0 to t0 = 0.1846. At this time we assume that the interface has reached the position
x0 = 0.14 and has a velocity v0 = 0.4616. Given values of σ and ε we can determine ξ and a
for the Caginalp potential from (2.4). At t0 we trigger the undercooling effect be specifying
an initial temperature of the interface, u0, and α is determined from the one-dimensional
Gibbs–Thompson relation

−u0 = −ασ


s
v0. (5.3)

The aim of this example is to check how well the solution of the PF equations satis-
fies (5.3), which holds for the sharp-interface modified Stefan model. Figure 5 shows the
evolution of the front temperature and the front position for the two cases u0 = −0.01 and

TABLE I

Differences in Interface Position between Adaptive PF Calculations Using the Caginalp

Potential and the Neumann Solution of a Classical Stefan Problem: N = 50, ∆t = 5 × 10−3,

and σ = 0.0053

a ξ ε ‖e f ‖∞ ‖e f ‖t=1 CPU

0.64 6.4E−3 5.12E−3 2.744E−3 2.733E−3 1.00
0.32 4.5255E−3 2.56E−3 3.540E−3 3.450E−3 1.07
0.16 3.2E−3 1.28E−3 3.958E−3 3.690E−3 1.21
0.0625 2.0E−3 5.00E−4 4.019E−3 3.578E−3 2.16
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FIG. 5. (Left) Temperature and (right) front position for modified Stefan problem with u0 = −0.01 and
u0 = −0.08. Gibbs–Thompson relation -·-, fine moving mesh - - -, moving mesh N = 50, �, ❉.

u0 = −0.08. The results were obtained using the parameters ξ = 0.002, a = 0.0625, N = 50,
and 
t = 5 × 10−3. For comparison we have also included solutions obtained using a fine
moving mesh with N = 250. We have compared the computed temperature on the interface
with the temperature obtained from (5.3), where the velocity of the front is approximated by
numerical differentiation. We can see that the agreement is excellent for both values of u0.
The computed front positions are also well predicted in comparison with the fine moving
mesh results.

5.3. Planar Solidification

A popular test case is to reproduce the travelling wave solution of the growth of a solid
planar interface within an undercooled melt. This problem has also been considered in [7],
[11], and [23]. The sharp interface equations (2.1) are solved with boundary conditions

u(∞) = ucool, u(−∞) = ucool + 1.

It is easy to show that there exists a travelling wave solution which takes the form

u(x, t) =
{

ucool + e−v∗(x−v∗t)/K , x > v∗t,

ucool + 1, x ≤ v∗t,
(5.4)

where the velocity

v∗ = − ε

6αa
(ucool + 1). (5.5)

A travelling wave solution of the PF equations can be found by writing them with respect to
a reference frame moving to the right with speed v(ε). This gives rise to the set of equations

v(ε)uη + v(ε)

2
pη + K uηη = 0, (5.6)

αε2v(ε)pη + ε2 pηη + 1

2
(p − p3) + 2au = 0, (5.7)
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FIG. 6. Travelling wave profiles of u and p for phase-field equations with α = 1, ε = 0.00625, and a = 0.02083.

where η = x − v(ε)t . We attempt to find a solution of these equations using central dif-
ference approximations of the derivatives. In addition, we fix the interface value so that
p(0) = 0. The discretised equations are solved using Newton’s method on an adapted mesh
with N = 200 points using monitor function (3.18) with γ = 1. For numerical purposes we
have truncated the computational domain so that η ∈ [−d, d], where d is chosen to be much
larger than the interface thickness. At the domain boundaries we apply the conditions

u(d) = ucool + e−v∗d/K , u(−d) = ucool + 1

and compatible Dirichlet conditions for p(±d). Figure 6 shows the profiles for u and p when
ucool = −1.05, d = 0.25, K = α = 1, ε = 0.00625, and a = 0.02083. With these parameters
the sharp-interface problem has a travelling wave solution with v∗ = 1. For comparison we
have also included the sharp-interface solution for u, which is shown using a dotted line.
We can see that we have reasonable agreement for this value of ε. Along with the computed
phase profile we have also plotted the function

p̄(η) =
{

p(−d) tanh
(

η

2ε

)
, η ≤ 0,

p(d) tanh
(

η

2ε

)
, η > 0,

which is shown using a dotted line. Clearly, there is excellent agreement between these
two functions, especially in the interface region. The velocity v(ε) with these parameters
was found to be 1.0430, slightly faster than that for the sharp-interface problem. It has
been shown in [9] that the velocity v(ε) → v∗ as ε → 0 and that the temperature converges
uniformly to (5.4) with respect to η. An important question is how quickly v(ε) → v∗.
Figure 7 shows that the phase-field velocity appears to converge at a rate that is first order
in ε. This rate is in agreement with the numerical simulations of Elliott and Gardiner [17].

The results from the steady calculation are then used as initial conditions for the full
time-dependent problem. Figures 8a and 8b show the profiles of u and p as solid lines
along with the travelling wave profiles advected along with the wave speed v(ε). These
results were calculated with 
t = 10−3, N = 50, and γ = 1 and are shown at times t = 0.02,
0.04, 0.06, 0.08, 0.1. It can be seen that the time-dependent results follow the travelling
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FIG. 7. Convergence of v(ε) to v∗ as ε → 0.

wave solution extremely well. Table II compares the discrete L2 error in the temperature at
t = 0.1 with two sets of results from Elliott and Gardiner [17]. These were obtained using
the usual quartic potential model, PF, and a model using a double-obstacle potential, PFO.
We can see that for the two larger values of ε, our results are a distinct improvement over
those obtained in [17], where the authors used a uniform mesh with N = 300 grid points
and 900 time steps. No result is quoted for either technique used by Elliott and Gardiner
for the smallest value of ε. It can be assumed that the authors would have found it difficult
to take such a small value of ε using only N = 300 uniform mesh nodes since there would
an insufficient number to resolve the interface region.

5.4. The Critical Radius of Instability of Solidification

Our final test case involves the stability of a solid sphere in equilibrium with its melt. If
the sphere has κ0 as its sum of principle curvatures, and both the solid and liquid are at a

FIG. 8. (Left) Temperature and (right) phase variable profiles for planar solidification with ε = 0.00625 and
a = 0.02083.
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TABLE II

Discrete L2 Error in u at t = 0.1 for Time-Dependent Travelling

Wave Problem

ε PF [17] PFO [17] Adaptive

0.02 5.23E−3 3.06E−3 2.10E−3
0.01 2.60E−3 1.33E−3 1.15E−3
0.00625 — — 9.53E−4

constant temperature, u0, then according to the Gibbs–Thompson relation

u0 = −σ0κ0/4. (5.8)

Following Caginalp [10], we consider the domain 1 ≤ r ≤ 2, with K = 10, L = 0.1, and
α = 1. The equilibrium position of the interface is chosen to be r0 = 1.5, leading to an initial
value for the curvature κ0 = 4/3. The surface tension is chosen to be σ0 = 0.15, so according
to (5.8) the initial temperature u0 = −0.05. The boundary conditions for the temperature are
u(1, t) = u(2, t) = u0. The initial condition for the phase field is given by (5.2) for various
values of the initial position, s0, of the solid sphere’s surface. The equilibrium situation has
been shown to be unstable in that if the initial interface s0 < 1.5 then the solid sphere melts
inwards, whereas if s0 > 1.5 then the sphere solidifies outwards [13]. The situation when
s0 ≈ 1.5 is therefore a very severe test of any numerical method.

Due to the spherical symmetry of the problem the governing equations can be written in
terms of the radius r as

αξ 2 ∂p

∂t
= ξ 2

(
∂2 p

∂r2
+ 2

r

∂p

∂r

)
− ∂ f

∂p
, (5.9)

∂u

∂t
+ L

2

∂p

∂t
= K

(
∂2u

∂r2
+ 2

r

∂p

∂r

)
. (5.10)

The spatial discretisation of (5.9) and (5.10) is again achieved using second-order cen-
tral difference operators. Figures 9 and 10 show results for various values of s0 with

FIG. 9. Front positions for sphere solidification problem. (a) s0 = 1.499; (b) s0 = 1.5.
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FIG. 10. Front positions for sphere solidification problem. (a) s0 = 1.501; (b) s0 = 1.52.

ξ = 0.045, a = 0.04, leading to an interface thickness ε = 0.009. For comparison, we have
also computed solutions using a fine uniform mesh with N = 2000 and 
t = 5 × 10−3.
When s0 = 1.499 we find that the sphere melts inwards as predicted. The adaptive grid
results show a similar behaviour using an order-of-magnitude less mesh points, result-
ing in a reduction in CPU time by a factor of 50. Similarly, with s0 = 1.5 we find that
we consistently predict that the sphere solidifies outwards. Caginalp and Socolovsky [10]
predict a similar behaviour using a very fine uniform mesh. However, it is interesting to
note that McCarthy [26] fails to calculate consistent results. The author concludes that
moving mesh methods are not suitable for this problem due to the sensitivity of results
on the temporal smoothing parameter which is part of the Blom and Zegeling algorithm.
However, it is clear from our results that the combination of an appropriate initial grid
and the lack of any temporal smoothing parameter improves the robustness of the predic-
tions. Finally, Fig. 10 shows that when s0 > 1.5 we always observe the sphere solidifying
outwards.

6. CONCLUSIONS

In this paper we have presented a simple moving mesh algorithm for the solution of the
one-dimensional phase-field equations. The method gives rise to smooth mesh trajectories
and results in significant efficiency savings over uniform mesh methods. The proposed
monitor function automatically clusters mesh points around the phase-change interface and
scales appropriately with its thickness. We have also proved that the system of nonlinear
algebraic equations arising from the discretisation on the moving mesh has a unique solution
for a small enough time step.

Recent work has concentrated on the development of the ideas presented here to two-
dimensional problems. These are incorporated within a moving finite element framework
which we have developed for two-dimensional classical Stefan problems [4]. Progress in
this area is reported in [5].
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